- Types of Data - Normal vs Non-Parametric
- Box and Whiskers Graph/ Box plot
- Sensitivity and Specificity, PPV, NPV/ Screening/ likelihood ratio
- Receiver Operator Characteristics ROC Curve
- Meta-Analyses: Forest Plot
- Meta-Analyses: Vertical Funnel Plots
- Horizontal Funnel Plots: Mortality and Revision Rates
- Survival Curves
- Reading RCTs/ Error
- Designing RCTs: Power, Randomization, Bias, and Blinding
- Outcome measures/ Grades of evidence
- Interobserver Variability
Types of Data - Normal vs Non-Parametric
‣
‣
‣
‣
Normal/ Parametric Measurement Data
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
Non-Parametric Measurement Data
‣
‣
‣
‣
Box and Whiskers Graph/ Box plot
‣
‣
‣
‣
‣
Sensitivity and Specificity, PPV, NPV/ Screening/ likelihood ratio
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
Receiver Operator Characteristics ROC Curve
‣
‣
‣
‣
‣
‣
Meta-Analyses: Forest Plot
‣
‣
‣
‣
‣
‣
‣
Meta-Analyses: Vertical Funnel Plots
‣
‣
‣
‣
Horizontal Funnel Plots: Mortality and Revision Rates
‣
‣
‣
‣
‣
Survival Curves
‣
‣
‣
‣
‣
‣
‣
Reading RCTs/ Error
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
Designing RCTs: Power, Randomization, Bias, and Blinding
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
Outcome measures/ Grades of evidence
‣
‣
‣
‣
‣
Interobserver Variability
‣
A false balance is an abomination to the Lord, but a just weight is his delight. Proverbs 11:1